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Identifying a human role
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2.1. France, June 2019

Daily maximum and minimum temperature averaged across France

Evolution des températures minimales et maximales quotidiennes en France

par rapport a la normale quotidienne
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Météo-France

Diagnostic établi & partir de l'indicateur thermique, moyenne des températures quotidiennes de 30 stations métropolitaines

Guess when the International Meeting on Statistical Climatology occurred in

Toulouse, southwestern France?
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2.2. Extreme weather seems to be common how

(a) Cold Nights
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e |In the context of human-induced

climate change, you might ask:

1950 1960 1970 1980 1990 2000 2010

‘Are we to blame for this weather . s

(c) Warm Nights

event?”

Hartmann et alii 2013
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2.3. What does standard detection and attribution

tell us?
Northern Asi
 [mersiy T Frequenty - T 1 I 1 ] e Hard to apply at small
i I 1 spatial scales
NBEES: . |
4 L Annual _summer  winter | @ Hard to apply for rare
TTTITITIITY
- ERER EEER events
- Soulthelrn Asig . _
2 L Intensity Frequency i = HOW dO you measure
1 T -
171 I : the trend in
0
4 L. Annual _Summer  Winter 1-in-100-year events in
22X 8888 &858
FRER . ZLEF ZRER 50 years of

IPCC (2013) (Bindoff et alii 2013) observations?
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2.4.

Necessary causation:
Turning Switch C'; on is
necessary but not sufficient
(a) |
I

Causative philosophy

Sufficient causation:

Turning Switch C; on is

sufficient but not necessary
(b) ‘ |

Necessary and sufficient:

Turning switch C'; on is both

necessary and sufficient

(c)

e But the climate system is much more complex than that

Daithi Stone (dastone@runbox.com)
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2.5. Causative framing

Change in probability

o’Prea|(>7'1OC)=ll-9o/o

T 4P(>7.1°0)=5.0%

Likelihood

0 2 4 6 8 10 12 14
Temperature anomaly (°C)

® “risk ratio” measure: RR = %—“‘f
e For above, RR = % = 2.4, chance

has more than doubled

e “fraction attributable risk” measure:

FAR=1— fret =1 L

e For above, FFAR = (.58, so 58% of

event occurrence due to emissions

Change in magnitude

Likelihood

0 2 4 6 8 10 12 14
Temperature anomaly (°C)

e For above, = 1 = (.28, so 28% of

anomalous magnitude due to emissions
® 28% does not sound like much

— Contrast with “chance increased by
2.4 times” and “58% of event

occurrence” statements at left

— Causative framing matters

Daithi Stone (dastone@runbox.com)
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Which causative framing is right?

e |t depends.

e An insurer of a bridge over a river may want to know how likely a damaging

flood is during the upcoming period of cover.

e An engineer upgrading the bridge may want to know how much to raise the
bridge in response to changes to the design n-year flood height.

® So the conclusion concerning the human influence on an extreme weather
event may depend strongly on whether an insurer or an engineer is asking...

Daithi Stone (dastone@runbox.com)
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Steps in one type of approach

e Follows the probability- (or “risk-") based framing
e Depends on output of climate models

e Compares probabilty of exceedance of a threshold between simulations
representing two scenarios:

— Factual: The real world (conditions that we experienced)

— Counterfactual: A natural world without human interference

e Many of these steps apply (or are paralleled in) other framings/approaches

Daithi Stone (dastone@runbox.com)
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2.6. Step #1: Identify an event

Was the event “extreme”?

Temperature over central eastern China, July-August 2013
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Was this event “extreme”?

Precipitation over inland eastern Australia, January-December 2013
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e Are all of these observational products of sufficient quality?

Daithi Stone (dastone@runbox.com)
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Region definition can matter

e Analysis of unusually wet months in
two sets of climate model simulations

e “WRAF” spatial scale is a 2.147Mm?
region in northwestern United States g 2 ° é
: o
e Other spatial scales divide that region £ 1gg§ -
into the indicated scale | -
e Risk ratio (probability ratio) is ~1.3 at )

1/4

large scale & o \,@ \9@ @ @ oF
Spatial Scale
e Ratio ranges from 1/2 to 2 at Angélil et alii (2018)

~67000km? (“1/32 WRAF”) scale

e Also depends on duration and season
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2.7. Step #2: Are our climate models appropriate?
e Sometimes easy to say “no”:
— An atmosphere-only climate model useless for marine heat event

— A 200-km resolution. model.inappropriate for tornadoes

e Then it gets hard:

— What are the appropriate tests?

Daithi Stone (dastone@runbox.com)



ldentifying a human role in extreme weather events

Does the model reproduce the climatology?

Precipitation over central U.S. states, March-August 2012
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How about for this event?

Precipitation over northern Thailand, July-September 201 1
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How much does it matter?

Change in probability Change with standard deviation halved

P...(>7.1°C)=0.92%

Pa(>7.1°C)=11.9%
Pid 4

#P(>7.1°C)=5.0%

Likelihood
Likelihood

_P..(>7.1°C)=0.05%

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Temperature anomaly (°C) Temperature anomaly (°C)

e Ratio of probabilities changes from 2.4 to 18!
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2.8. Does the model reproduce the forced trend?

1-in-1-year hot event
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e Plot shows range of possible risk ratios given

spreads across climate models

— Range because of trend uncertainty: 20 to
13000

— Range because of climatology uncertainty: 1.4
to 1100

® Accuracy in simulating trend may be more

important test!

e For observed climatology we have decades of

data to sample daily events
e For the long-term trend we have only one sample!

e D&A of measures of local and rare events is hard...
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2.9. Step #3: Compare chance of events

Precipitation over central U.S. states, March-August 2012
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e P, . ranges from 0.11% to 1.03%, depending on observational product
® .., ranges from 0.22% to 1.72%
e So the R R ranges from 1.7 to 2.0
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2.10. Another example

Temperature over central eastern China, July-August 2013
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® [, ranges from 0.01% for both observational products

® /.., ranges from 1.06% to 1.18%
e So the RR ranges from 100 to 120
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2.11. Events that today’s climate models cannot do

e T[ropical cyclones cannot be properly

§ represented using models typically used for
2§ climate change study (about 100km grid

1. resolution or coarser)

= e They can be nicely simulated by when these
Tg models are run at higher resolution (e.g. 8km)
% .' o) — But then too expensive to run over many
= é years

9 ’\—i — Instead, let’s use them to make forecasts
% © (but afterward, so “hindcasts”) and

E é “forecasts that might have been without
< %J human interference”

Daithi Stone (dastone@runbox.com)
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2.12. Hindcasts of Typhoon Haiyan (Yolanda)

T Y

Wehner et alii (2019)

e Red: hindcasts under observed conditions
e Blue: hindcasts under naturalised observed conditions (i.e. with human

influence removed)
e |[mportant: The tracks are pretty much the same, so we are looking at the same

storm in both scenarios!

Daithi Stone (dastone@runbox.com)
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1000
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Wehner et ali (2019)

Days

e Red: hindcasts under observed conditions
e Blue: hindcasts under naturalised observed conditions (i.e. with human

influence removed)
e According to this experiment, human influenced decreased wind speed and

central pressure anomaly
e Effect of anthropogenic ocean warming (green) and atmospheric warming and

wetting (green) oppose each other

Daithi Stone (dastone@runbox.com)
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2.13. Storylines

e That Typhoon Haiyan hindcast analysis is an example of a storyline approach

e |t tells us nothing about the probability of a Category 5 typhoon hitting the
Philippines

— It only tells us what would have happened if a Haiyan like storm were bearing
down on the Philippines under November 2013 large-scale winds

e Lots of linear assumptions in how human influence can be removed
e But may still be useful information (maybe more useful)

e Important to note that experiment is highly conditioned

Daithi Stone (dastone@runbox.com)
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2.14. Hierarchy of conditioning

Experiments with:

Global atmosphere-ocean model: Depends on model only
Global atmosphere-only model: Also depends on anomalous ocean state
Hindcast with global atmosphere model: Also depends on initial hindcast

atmospheric state
Hindcast with regional atmosphere model: Also depends on hindcast

atmospheric boundary states

® Less conditioning (top) means fewer assumptions in experiment design

— Can be used for probability, magnitude, or storyline statements
e More condnitioning (bottom) allows fewer assumptions in modelling tool

— Cannot be used for probability statements

Daithi Stone (dastone@runbox.com)
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2.15. Operational event attribution

Goal: to produce event attribution assessments in real-time or near-real-time

Reactive: Triggered by the occurrence of an extreme weather event (e.g. World
Weather Attribution)

Proactive: Perform and circulate analyses systematically for a class of events in
advance (e.g. Weather Risk Attribution Forecast)

Daithi Stone (dastone@runbox.com)
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2.16. Operational event attribution in action

® [his occurred in

)

—

the last week of =3

3 .o

June 2019 5=

O ®©

Analysis posted £%
o =

nalysis poste | e
S

on 2 July 2019 Q5

£06

~|

A - J GJ GJ

<3

7.5 6 f|1.5 13 1.5 |5 é 4'.5 6 7.5 QO

Figure 1a: The highest 3-day daily mean temperature in June 2019 compared to the highest 5 %

values in 1981-2010 Source: E-OBS (preliminary data) ;3
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Assessment for France and Toulouse, late June 2019

Mainland France

Toulouse
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World Weather Attribution
(van Oldenborgh et a?i}[ 2019)
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2.17. Challenges in working in (near-)real-time

Precipitation over East Africa, June-September 2011
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e An event attribution study was published on this “drought”!
e Error in comparing prototype new operational monitoring product against

traditional historical products in monitoring-poor region

Daithi Stone (dastone@runbox.com)
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2.18. Event attribution as a bottom-up costing

method

e Estimates of the cost of climate change tend to come from “top-down” methods
— Using integrated assessment models to simulate climate, natural, and human
systems
e Top-down methods are expensive and are only feasible with coarse
approximations of all of the various processes

— They do not produce local extremes

e But local extremes are the most costly part of current climate risk!

— For instance, tropical cyclones

e Can we estimate climate change costs for extreme weather events?

Daithi Stone (dastone@runbox.com)
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Bottom-up estimate of anthropogenic climate change

costs for Aotearoa New Zealand

Analysis of extreme rain events associated with >1 0”NZD insured losses from
pluvial floods duing 2007-2017:

Year Date Location Climate Insured losses Attributable losses

change FAR 106 NzD) losses (106 NzD)
2007 10-12 July north North Island 0.30 68.65 20.595
2017 3-7 April North Island 0.35 66.4 23.24
2013 19-22 Apr Nelson, Bay of Plenty 0.30 46.2 13.86
2017 7-12 Mar Upper North Island 0.40 41.7 16.68
2015 18-21 Jun Lower North Island 0.10 41.5 4.15
2016 23-24 March West Coast-Nelson 0.40 30.2 12.08
2015 13-15 May lower North Island 0.30 21.9 6.57
2015 2-4 Jun Otago 0.05 215 1.075
2011 29 Jan Northland to Bay of Plenty 0.30 19.8 5.94
2014 8-10 Jul Northland 0.30 18.8 5.64
2017 13-16 Apr mostly North Island 0.35 18.0 6.3
2007 29 Mar Far North 0.30 12.0 3.6

Frame et alii (submitted) (FAR = 1 — Lnat)

Preal

Daithi Stone (dastone@runbox.com)
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e Total insured losses for those 12 flood events: NZD406 million

— Of which attributable to anthropogenic emissions: NZD120 million
e Total costs for two drought events: NZD4.3 billion

— Of which attributable to anthropogenic emissions: NZD720 million
e This is much larger than total projected future costs using top-down
approaches!

e Suggests that estimates based on observed outcomes may be informative
® Some caveats:

— Loss and cost estimates are very uncertain
— Uninsured flood losses, other costs not considered
— Interpretation of FAR assumes additive attributable components

e So this is probably an underestimate!

Daithi Stone (dastone@runbox.com)
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2.19. What can we say about change in total risk?
Risk = Yp—pgazara (Probability|h) - Exposure|h] - Vulnerability|h])

~—~
Table 18-3 | lllustrative selection of recent disasters related to extreme weather events, with description of the impact event, the associated climate hazard, recent climate trends <g~
relating to the weather event, and recent trends relating to the consequences of such a weather event.

Decreasing frequency of tropical
cyclones in the Mozambique Channel
during past 50 years (Mavume et al.,
2009) (medium confidence)

~—
o
Date . . Trends relating to likelihood Trends relating to consequence AN
Impact event Associated climate hazard . . o
and locale of climate hazard of climate hazard =
France, summer | Approximately 15,000 excess | Record hot days/heat wave (Hémon Increasingly frequent hot days and * Aging population, increasing population, trends in ©
2003 deaths (Hémon and Jougla, and Jougla, 2003; Fouillet et al., 2006) heat waves in recent decades (Perkins marital status (Hémon and Jougla, 2003; Prioux, -+
2003; Fouillet et al., 2006) et al,, 2012; Seneviratne et al., 2012) 2005; Fouillet et al., 2006; Rey et al., 2007) o
(high confidence) * Difficulties staffing health services, undeveloped —
early warning system (Lalande et al., 2003; Fouillet )
etal.,, 2008) &
Atlantic and More than 1,000 deaths and | Record number of tropical storms, Recent increase in frequency but * More population, settlement, and wealth in coastal 9
Gulf coasts more than US$100 billion in | hurricanes, and category 5 hurricanes no clear century-scale trends in areas (Pielke Jr. et al., 2008; Schmidt et al., 2010) O
of the United damage (Beven et al., 2008) (Bell et al., 2006) USA landfalling tropical storms or o Strenatheni f buildi des (IntraRisk. 2002
States, 2005 hurricanes (WGl AR5 Section 2.6.3, rengthening of building codes (IntraRisk, ) A
Knutson et al., 2010) (high confidence) g_\
Mozambique, More than 100,000 people High rainfall in upper Zambezi Basin in | Warming and decreasing rainfall ¢ Increased settlement of Zambezi flood plain ~—
early 2007 displaced by flooding (Foley, | preceding months; passage of Cyclone | leading to lower discharge of the following dam construction (Foley, 2007) (@)
2007; Artur and Hilhorst, Favio (Thiaw et al., 2008) Zamfk_z!em (Dai et al., 2009) (low « Development of emergency response plans N
2012) confidence) (Cosgrave et al., 2007; Foley, 2007) St

e We need to consider much more than climate!

Daithi Stone (dastone@runbox.com)
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2.20. Main messages

e We can say something about the role that our emissions (or land use/cover
change, etc.) have had on a particular event, at least in theory.

® For some events we may be able to address them in their entirety.

e For some events we may only be able to address some properties at the
moment, but not others.

e There are different ways of thinking of causality and inferring causality.

— They may lead to apparently contradictory conclusions!
e “Event attribution” is distinct from “detection and attribution”.

— Event attribution analyses can consider events far in the future (e.g. 2100).
— D&A can only every analyse the past.
e Usage of D&A information in event attribution studies is limited so far.

Daithi Stone (dastone@runbox.com)




