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16. THE DEADLY COMBINATION OF HEAT AND HUMIDITY 
IN INDIA AND PAKISTAN IN SUMMER 2015

Michael Wehner, Dáithí Stone, Hari Krishnan, Krishna AchutaRao, and Federico Castillo 

Observations and Impacts. Andhra Pradesh, Telangana, 
and other southeastern Indian states suffered a deadly 
heat wave in late May and early June of 2015. Daily 
high temperatures exceeded 45°C in many places 
throughout India for several days in a row. In late 
June and early July, just a few weeks later, Pakistan 
also suffered from a deadly heat wave with similar 
daily high temperatures. Although the Pakistani heat 
wave occurred very soon after the Indian heat wave, 
they were distinct meteorological events. Ratnam 
et al. (2016) classify heat waves over India into two 
types, those that occur over north-central India 
and those that occur over coastal eastern India. The 
study finds that the former tend to be associated 
with anomalous blocking over the North Atlantic 
Ocean. Heat waves over coastal eastern India were 
found to be associated with westerly anomalies over 
the Indian landmass, thereby reducing the land–sea 
breeze along the coastal regions. Hence the Loo, a 
strong afternoon overland wind, brought hot and 
dry conditions to India (Fig. 16.1a). By late June, 
the Indian monsoon was well developed, curtailing 
these winds and terminating the heat wave (see www 
.tropmet.res.in/~lip/Publication/Scientific-Reports 
/RR-185.pdf). In Pakistan by this time, winds were 
onshore (Fig. 16.1b), and the unusually hot conditions 
were also unusually humid. The high numbers of 
deaths in both events are attributed not only to the 
weather conditions but also to institutional failures. 
Hospitals were overwhelmed with patients suffering 
from heat-related symptoms and at some point had 
to turn away patients (Salim et al. 2015). It is difficult 
to be precise about the ultimate number of fatalities 

associated with these heat waves, but upwards of 2500 
excess deaths are estimated to have occurred in the 
Indian heat wave (Ratnam et al. 2016) and at least 700 
alone in the Pakistani megacity of Karachi (Masood 
et al. 2015) with many more throughout the country.

To further characterize these heat waves, we have 
analyzed 1973–2015 subdaily (hourly and 3-hourly) 
temperature and heat index (Steadman 1979a,b) 
calculated from the HadISD v1.0.4.2015p quality 
controlled weather station dataset (Dunn et al. 2012). 
Heat index, one of several methods to measure the 
combined effect of temperature and humidity on 
human health, is a bicubic function of both variables 
intended to fit a model of a fully clothed adult (see 
Supplemental Material for its definition). Figures 
16.1c,d show the daily maximum instantaneous heat 
index (thick red lines) and the temperature (thick 
black lines) associated with it during the heat waves 
in Hyderabad (in the Indian state of Telangana, WMO 
station number 431280) and Karachi (the largest city 
in Pakistan, WMO station number 417800). The pen-
tadal averages of these daily maxima are shown with 
thin lines. Climatological averages over 1974–2014 
are shown with horizontal dotted lines for May in 
Hyderabad and June in Karachi to show the events’ 
relative severity. In Hyderabad, the daily maximum 
heat index was about 2°–4°C higher than temperature 
during the heat wave. In Karachi, this difference 
was about 7°–12°C, reflecting a much higher rela-
tive humidity. The first column of Table 16.1 shows 
representative values of temperature and heat index 
during the most severe periods of the 2015 heat waves 
drawn from Figs. 16.1c,d.

Figures 16.2a,b are scatterplots of relative hu-
midity against temperature at the time of the daily 
maximum heat index value over the observational 
record of 1973–2015. Colored dots show the official 
U.S. NOAA advisory heat index levels of caution, 
extreme caution, danger, and extreme danger. In 
such hot climates, the 1974–2014 average daily maxi-
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mum heat index (indicated by the large black dot) is 
well within the advisory levels revealing that these 
U.S.-based statements were not developed for these 
regions. More widely applicable measures of the threat 
of severe heat wave to human health are not available 
(Wehner et al. 2016). Rare and dangerous events are 
along the upper-right edge of this two-dimensional 
distribution, which are not necessarily the highest 
temperatures. The 2015 heat waves are represented 
by asterisks. These figures reveal stark differences 
in both the heat waves and climatologies of the two 
cities. In Hyderabad, the 2015 heat wave was among 
the highest temperatures ever experienced but relative 
humidity was low, around 20%. In Karachi, the 2015 
heat wave was hot but not near record levels. However, 
because relative humidity was high (35%–70%), the 
daily maximum heat indices were among the highest 
ever experienced. These combinations of temperature 
and relative humidity were rare events as is evident 
by the proximity of the asterisks to the edge of the 
distribution in Fig. 16.2b.

Analysis of possible human inf luence. The annual 
maxima of the pentadal average of the daily maximum 
heat indices and associated temperatures exhibit 
increasing trends for both stations (thin red lines in 
Supplemental Figs. S16.1a,b). To account for this, we 
use a nonstationary peaks over threshold extreme 
value methodology (Coles 2001) to fit a generalized 
Pareto distribution in order to estimate time-
dependent return periods for high daily and pentadal 
values. To incorporate the effect of anthropogenic 
climate change, we used a time varying estimate of 
CO2 (see www.esrl.noaa.gov/gmd/ccgg/trends/) as 
the covariate in the Pareto distribution using a 95th 
percentile threshold and a 3-week declustering. Using 
the event magnitudes in the first column of Table 16.1, 
we find a strong time dependence of the temperature 
and heat index return periods (Supplemental Figs. 
S16.1c,d) for the pentadal values. Very little time 
dependence in the return periods for the daily values 
for the Karachi station over the duration of the 
observational record is found, consistent with the 

Fig.16.1. (a),(b) Afternoon 700 hPa wind vectors and speed from the ERA-Interim reanalysis on (a) 29 May 2015 
(Indian heat wave) and (b) same on 30 Jun 2015 (Pakistani heat wave). The purple dots indicate the location of 
the weather stations used in this study. (c),(d) Daily maximum heat index values and associated temperatures 
during (c) the Indian heat wave and (d) same for the Pakistani heat wave. Dotted horizontal lines are 1974–2014 
climatological averages for the month of the occurrence of the peak in the heat waves.
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absence of a significant trend in the extrema of daily 
maxima for that station (thick lines in Supplemental 
Fig. S16.2b). Return periods of high temperature 
and head index in Hyderabad exhibit strong time 
dependence for both the daily and pentadal values, 
also consistent with relative magnitude of the trends 
and variations of Supplemental Fig. S16.1a. The 2015 
values of return periods corresponding to estimated 
event magnitudes are shown in the second numeric 
column of Table 16.1. Because the CO2 covariate is 
clearly dependent on human activities, there is a 
statistically significant relationship between human 
influence and the heat index. However, because the 
statistical model does not consider that unforced 
natural variations may be coincidental with increases 
in atmospheric CO2, this statistical significance does 
not necessarily mean that an anthropogenic response 
has been detected by this analysis alone.

To more rigorously estimate a possible human 
inf luence, we utilize simulations drawn from the 
C20C+ Detection and Attribution Subproject 
(Folland et al. 2014). Temperature and relative 
humidity were extracted from the grid points nearest 
to the Hyderabad and Karachi airport weather 
stations from two 98-member ensemble simulations 
of the Community Atmospheric Model (CAM5.1) at a 
resolution of approximately 100 km (Risser et al. 2016, 
unpublished manuscript, available online at https://
arxiv.org/abs/1606.08908). Simulations from 1996–

2015 driven by observed sea surface temperatures and 
sea ice distributions represent the “world that was,” 
referred to here as “actual.” A counterfactual “world 
that might have been” set of simulations represents 
the climate system had humans not altered the 
composition of the atmosphere (Folland et al. 2014). In 
this case, an estimate of the human-induced changes 
to the sea surface temperature and sea ice distribution 
obtained from the CMIP5 models is removed from the 
lower boundary conditions and atmospheric trace gas 
and aerosol concentrations set to preindustrial values 
(Stone 2013). Comparison of model grid points to 
individual weather stations is performed with caution. 
Hyderabad Airport is located in the countryside well 
outside of the metropolitan area, and thus should be 
representative of temperature variations occurring 
on spatial scales resolved by the climate model. 
Karachi Airport is, however, located within the 
metropolitan area, and Karachi itself is a coastal city, 
so the climate model may not be properly resolving 
urban and coastal microclimate phenomena that 
are influencing weather at the airport. However, the 
pair of ensemble simulations use the same changes in 
land use and cover, so differences are predominantly 
a result of changes in atmospheric composition and 
ocean state rather than in the urban heat island. 
The model was determined to be fit for purpose by 
the tests outlined in Angélil et al. (2016a). Angélil et 
al. 2016b conclude that CAM5.1’s estimates of the 

Table 16.1. Estimates of observed daily maximum heat index and temperature (°C), its return period 
(years), the corresponding quantile bias corrected return value in simulations of the actual world, and 
similar simulated quantities of a counterfactual world, human-induced risk ratio and return value changes. 
Bias corrections of the simulated actual distributions are made at the quantile corresponding to the 
observed return period. The magnitudes of the quantile bias corrections are the differences between values 
in the column labeled “Simulated Actual RV” and “Observed Value.”  

Observed

Value 
(°C)

Observed

RP 
(years)

Simulated 

Actual

RV(°C)

Simulated 

Counter-

factual 

RP(years)

Simulated 

Counter-

factual 

RV(°C)

Simulated 

Risk Ratio
Simulated 

∆ RV

Heat Index

Hyderabad daily 46.9 1.9 42.5 23.6 40.7 12.1 1.7

Hyderabad pentad 45.7 2.8 42.0 92.3 40.3 32.8 1.7

Karachi daily 53.5 4.0 49.3 31.1 46.9 7.7 2.4

Karachi pentad 50.4 43.9 49.1 >>1000 46.6 >1000 2.5

Temperature

Hyderabad daily 44.0 2.7 43.4 9.6 42.5 3.6 1.0

Hyderabad pentad 41.8 1.8 41.7 3.3 40.8 1.9 0.9

Karachi daily 41.9 2.1 43.0 2.7 42.5 1.3 0.5

Karachi pentad 40.7 5.9 42.8 9.4 42.3 1.6 0.5
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1-in-1-year and 1-in-10-year anomalous thresholds 
for hot days over India/Pakistan are all consistent 
with estimates from current reanalysis products. 
Figures 16.2c,d show histograms approximating the 
simulations’ distribution of the pentadal average of 
the daily maximum heat index for the counterfactual 
world (blue) and actual world (red) during the month 
of the two heat waves’ peak intensity and reveal 
a pronounced shift toward higher values caused 
by the changes in forcing due to anthropogenic 
activities. Corresponding histograms for the daily 
maximum heat index and for both measures of 
extreme temperature are shown in Supplemental 
Fig. S16.2. For both locations, the models’ response 
in extreme temperature is less than in heat index but 
the profound difference in the daily and pentadal 
Karachi observational extremes revealed by changes 

in return period (Supplemental Figs. S16.1c,d) are not 
readily apparent in the simulations.

Utilizing the quantile bias correction method of 
Jeon et al. (2015), we estimate the changes in return 
period for corrected daily and pentadal values of peak 
temperature and heat index for both heat waves. This 
is used to define the “risk ratio,” the ratio of the prob-
abilities of reaching the corrected model estimates of 
the observed event in the factual and counterfactual 
simulations or, more simply, the inverse of the ra-
tio of the corresponding return periods. Shown in 
Table 16.1, we find a substantial human increase in 
the risk ratio of heat index for both the Indian and 
Pakistani heat waves. The heat index risk ratio is 
substantially larger for pentadal values than it is for 
daily values. This is particularly relevant to assessing 
human-induced changes in the heat wave-related risk 

Fig. 16.2. (a),(b) Scatterplots of observed temperature and relative humidity from 1973–2015 at the time of 
the daily maximum heat index at (a) Hyderabad, India, and (b) Karachi, Pakistan. The 2015 heat wave days are 
shown by the asterisks. Other observations are colored according to NOAA heat index advisory levels. The 
large black dots are the May/Jun climatological averages. (c),(d) Histograms of uncorrected maximum pentadal 
average of daily maximum heat index for the counterfactual (blue) and actual (red) simulations, (c) May 2015, 
Hyderabad and (d) Jun 2015, Karachi.
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to human health and mortality, as is it is the long-
term exposure to high heat that is most dangerous. 
Changes in simulated return values corresponding to 
the estimated observed return time are also shown in 
the last column of Table 16.1, revealing large human-
induced changes in the magnitude of heat waves of a 
fixed rarity for both cities.

We note that the climate model simulation (not 
shown) does not exhibit as large a trend in the esti-
mated return periods of temperature and heat index 
as some of the HadISD observational products. How-
ever, the sampling uncertainty of the observations, 
represented by the error bars in Supplemental Figs. 
S16.1c,d, is large and the model is not necessarily in-
consistent with the observations in this regard. Sam-
pling uncertainty is much lower in the model because 
of the size of the ensemble dampens the inherent 
natural variability. In the simulations, the human 
signal is larger for the heat index than for temperature 
over both the daily and pentadal extremal measures at 
both locations (Table 16.1). We also find that for heat 
index, the human influence is greater on the pentadal 
scales than on the daily scales but that it is about the 
same for temperature at both locations. The time 
dependence of the Karachi observations could also 
be described this way, although there is essentially 
no trend in the daily extrema (Supplemental Figs. 
S16.1b,d). The time dependence of the Hyderabad 
observations is also similar except for the large change 
in the daily temperature (Supplemental Figs. S16.1a,c). 

Jeon et al. (2015) demonstrated that risk ratio esti-
mates for heat waves could be relatively insensitive to 
uncertainty in observed event magnitude. Hence, the 
principal uncertainties in the estimates of risk ratio 
and return value changes for heat wave occurrence in 
Table 16.1 stem from the use of a single climate model 
as well as the single estimate of counterfactual ocean 
state rather than observational uncertainty.

Conclusion. The deadly heat waves of 2015 in India and 
Pakistan were distinct meteorological events without 
obvious connection despite the proximity in location 
and time. We find a substantial human-induced 
increase (~800% to > 100 000%) in the likelihood of 
the observed heat indices. Alternatively, we also find 
a human-induced increase (~2°C) in the heat indices 
of nonindustrial events of equivalent rarity to that 
estimated in 2015 (Table 16.1). This anthropogenic 
influence is found to be higher for pentadal than for 
daily measures of heat wave severity, with potential 
implications for human health and mortality because 
of their dependence on heat wave duration.
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